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Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the 
aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., 25 
organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using 
in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not 
uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of 
the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) 
based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can 30 
inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these 
AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical 
parameters that need to be refined in models. 
In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are 
defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical 35 
instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, 
and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-
informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT 
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dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training 
dataset. We also investigate the relative skill of various combinations of aerosol optical properties to 40 
define AMTs and how much these optical properties can capture dominant aerosol speciation.  
We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-
influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction 
angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two 
wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the 45 
refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ 
gas measurements, can be successfully extracted from at least three combinations of airborne in situ 
aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find 
that the optically based classifications for BB from agricultural fires and polluted dust include a large 
percentage of misclassifications that limit the usefulness of results relating to those classes.  50 
The technique and results presented in this study are suitable to develop a representative, robust and 
diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs 
using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential 
to provide a much broader observational aerosol data set to evaluate chemical transport and air quality 
models than is currently available by direct in situ measurements. 55 
This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical 
signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next 
generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and 
Precipitation (ACCP) designated observables). 
 60 

1 Introduction 

Aerosols have an important yet uncertain impact on the Earth’s radiation budget (e.g., Boucher et al., 
2013) and human health (e.g., US EPA, 2011, 2016; Lim et al., 2012; Lanzi, 2016; Landrigan et al., 2018; 
Wu et al., 2020). In particular, aerosols impact human health by increasing the number of cases of 
emphysemas, lung cancers, diabetes, hypertensions and premature deaths (e.g., Wichmann et al., 2000; 65 
Pope et al., 2002; Lim et al., 2012; Lelieveld et al., 2019, 2015; Stirnberg et al., 2020; Nault et al., 2021); 
this particularly holds true for specific species of aerosols with high oxidative potential (e.g., Daellenbach 
et al. 2020).  
Chemical Transport Models (CTMs) and General Circulations Models (GCMs) derive aerosol optical 
properties and estimate the Radiative Forcing due to aerosol-radiation interactions (RFari), based on 70 
simulated water uptake, simulated aerosol mass concentrations, simplified aerosol size distributions and 
assumed aerosol refractive indices per species (Chin et al., 2002). RFari for individual aerosol species 
(e.g., sulfate, black carbon (BC), organic aerosol (OA, typically classified into primary, POA, and 
secondary organic aerosol, SOA), nitrate, biomass burning (BB)) are less certain than the total RFari 
(Boucher et al., 2013; Myhre et al., 2013). Myhre et al. (2013) present a large AeroCom Phase II inter-75 
model spread in the Radiative Forcing (RF) of several aerosol species. BC, for example, had a 40% 
relative standard deviation in RFari. Inter-model diversity in estimates of RFari is caused in part by 
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different methods for estimating aerosol properties (e.g., emissions, transport, chemistry, deposition, 
optical properties (Loeb and Su, 2010)), and to a lesser extent by surface and cloud albedos, water vapor 
absorption, and radiative transfer schemes (e.g., Randles et al., 2013; Myhre et al., 2013; Stier at al., 2013; 80 
Thorsen et al., 2021).  
In order to constrain model simulations, data assimilation techniques have been adopted using optimal 
estimation methods and observational constraints that we separate in four main groups. The first group of 
constraints consists in column-integrated aerosol optical properties from passive orbital and/or suborbital 
instruments (e.g., Collins et al., 2001; Yu et al., 2003; Generoso et al., 2007; Adhikary et al., 2008; Niu 85 
et al., 2008; Zhang et al., 2008; Benedetti et al., 2009; Schutgens et al., 2010; Kumar et al., 2019; 
Tsikerdekis et al., 2021). The second group consists in fine aerosol mass concentrations from airborne 
and/or ground-based instruments (e.g., Lin et al., 2008; Pagowski and Grell, 2012). The third group 
consists in a combination of in situ gas-phase measurements (e.g., SO2, NO2, O3, CO), fine aerosol mass 
concentrations from ground-based instruments and column-integrated aerosol optical properties from 90 
passive orbital instruments (e.g., Ma et al., 2019). The fourth group consists in surface (e.g., Kahnert, 
2008, Yumimoto et al., 2008; Uno et al., 2008) and space-based aerosol lidar profiles (e.g., Sekiyama et 
al., 2010; Zhang et al., 2011), which are used to constrain aerosol mass and extinction. Constraining 
model-predicted aerosol mass concentrations with passive satellite total column-integrated aerosol 
properties has been shown to be useful to constrain model-predicted AOD. This is the case for the single-95 
channel visible Aerosol Optical Depth (AOD) retrievals from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor (e.g., Yu et al., 2003; Zhang et al., 2008; Benedetti et al., 2009; 
Sessions et al., 2015; Buchard et al., 2017; Kumar et al., 2019; Ma et al., 2019). However, this process 
does not correct the uncertainty associated with the simulated vertical distribution of aerosols, nor can it 
derive aerosol chemical speciation. On the other hand, assimilation of satellite-derived optical properties 100 
related to particle size (e.g., Extinction Angstrom Exponent, EAE) and light absorption (e.g., Single 
Scattering Albedo, SSA) represents a step forward (e.g., Tsikerdekis et al., 2021). Another way to improve 
estimates of speciated RFari would be to use satellite-derived total column speciated aerosol mass 
concentration to adjust the mass concentration of individual aerosol masses when applying data 
assimilation techniques in the model (and potentially the emission/chemistry/transport processes driving 105 
them). However, currently no satellite-derived retrievals of aerosol chemical speciation exist. 
Let us note an important distinction between what is called aerosol speciation and aerosol type. On the 
one hand, we define aerosol speciation the inherent chemical composition of the aerosol (also called 
aerosol component), the chemical species that are represented in CTMs (e.g., BC, OA, brown carbon, 
sulfate, nitrate, ammonium, dust, sea salt). These are typically defined to match the operational quantities 110 
reported by in-situ instruments. On the other hand, the Air Mass Aerosol Type (AMT) is representative 
of typical aerosol mixes associated with certain seasons and geographical locations. It is a coarse 
definition (qualitative) of the aerosol size, shape and color that dominates an air mass (e.g., clean marine, 
dust, polluted continental, clean continental, polluted dust, smoke, and stratospheric in the case of 
CALIOP/ CALIPSO, Cloud-Aerosol Lidar with Orthogonal Polarization/ Cloud-Aerosol Lidar and 115 
Infrared Pathfinder Satellite Observation (Omar et al., 2009)). 
 
On the one hand, recent techniques infer aerosol speciation from A-Train’s POLDER (Polarization and 
Directionality of Earth’s Reflectances) passive satellite observations on board the PARASOL platform 
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using an inverse modeling framework, which consists in fitting satellite observations to model estimates 120 
by adjusting aerosol emissions. POLDER measures polarized radiances in 14-16 viewing directions at 
443, 670 and 865 nm and retrieves aerosol optical properties over land (Deuzé et al., 2001) and over ocean 
(Herman et al., 2005) using its standard retrieval algorithm. In addition, two alternate POLDER retrieval 
algorithms from the SRON-Netherlands Institute for Space Research algorithm (Hasekamp et al., 2011, 
Fu et al., 2020) and generated by the GRASP (Generalized Retrieval of Atmosphere and Surface 125 
Properties) algorithm (Dubovik, 2014) make full use of multi-angle, multi-spectral polarimetric data. For 
example, Chen et al. (2018, 2019) use POLDER/GRASP spectral AOD and Aerosol Absorption Optical 
Depth (AAOD) to estimate emissions of desert dust, BC, and OC. Similarly, Tsikerdekis et al., (2021) 
use POLDER/SRON AOD, AAOD, EAE and SSA, but with a different model and assimilation technique, 
and to estimate the aerosol mass and number mixing ratio of specific aerosol species. 130 
On the other hand, AMTs inferred by various techniques and using satellite remote sensing observations 
are useful to provide spatial context (e.g., regional, seasonal, annual trends) to support other observations 
of aerosols and clouds or evaluate other aerosol type classifications. These AMTs are also useful in 
evaluating models in simple cases where a single aerosol species is present (e.g., “pure dust”). For 
example, Johnson et al. (2012) demonstrated how CALIPSO mineral dust aerosol extinction retrievals 135 
were applied to improve dust emission and size distribution parameterizations in the global GEOS-Chem 
model, a global 3-D model of atmospheric chemistry driven by meteorological input from the Goddard 
Earth Observing System (GEOS).  
We have inferred qualitative AMTs from passive POLDER/SRON remote-sensing retrievals of EAE 
between 491 and 863 nm, SSA at 491 nm, a difference in Single Scattering Albedo, dSSA between 863nm 140 
and 491 nm, a Real Refractive Index, RRI at 670 nm and a pre-Specified Clustering and Mahalanobis 
Classification method (SCMC) (Russell et al., 2014). 
The SCMC method, based on the methodology developed by Burton et al. (2012), uses the Mahalanobis 
distance (Mahalanobis, 1936) analysis in multidimensional space to assign AMTs based on a suite of 
observed parameters. The number of parameters is adjustable, as are the nature of the parameters 145 
themselves. Similarly, the AMT definitions are flexible. However, a key requirement for the SCMC 
method is that reference values for each AMT must be defined (i.e., the mean, variances and covariances 
of the aerosol variables), typically using prescribed AMTs for a subset of observations. In practice, when 
applying SCMC to a new environment, a training data set is created by prescribing a set of air masses 
based on independent observations. Those pre-specified AMTs from Russell et al. (2014) are based on 150 
dominant aerosol types from AErosol RObotic NETwork (AERONET) stations at specific locations and 
times (Holben et al., 1998). In Russell et al. (2014), qualitative AMTs were derived over the island of 
Crete, Greece, during a 5-year period using the SCMC method and pre-specified AMTs from global 
AERONET observations.  
 155 
In this paper, we have extended the methods of Russell et al. (2014) (i.e., over Greece) to the entire globe 
for the year 2006. On the one hand, the POLDER-derived AMTs presented reassuring features such as (i) 
dust over the Atlantic between the Saharan coast and Central to South America, predominant in MAM 
and JJA, (ii) urban industrial aerosols found near industrialized cities such as the East Coast of North 
America and over South East Asia, and (iii) two different types of Biomass Burning (BB) over the South 160 
East Atlantic (i.e., one illustrating more smoldering combustion and pre-specified using AERONET 
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stations located in South America and the other one illustrating more flaming combustion and using 
AERONET stations in Africa). We found darker BB (i.e., lower SSA) in August compared to September, 
due to an increase of POLDER-retrieved SSA during the season, reflecting either a change in BB aerosol 
composition (Eck et al., 2013) or a mix of AMTs (Bond et al., 2013).  165 
On the other hand, many features such as marine aerosols over the Saharan Desert or urban industrial 
aerosol type in South America, were most likely misclassified. Ambiguities in POLDER-derived AMTs 
could result from a combination of four factors: 
(i) Errors in POLDER reflectance/polarization measurements and aerosol retrievals (e.g., errors in 
POLDER retrievals get larger for smaller AOD and/ or smaller range of scattering angles),  170 
(ii) A coarse spatial resolution of the gridded POLDER product (e.g., 2º x 2º),  
(iii)  Non-optimal AERONET-based pre-specified AMTs used as a training dataset (e.g., the AMT 
illustrating more flaming combustion is defined in locations, such as Mongu in Africa, where smoldering 
and flaming combustion might be occurring at the same time, together with other AMTs present in the 
atmospheric column) and/or 175 
(iv) A restricted number of POLDER-derived aerosol optical parameters. That is, the relative AMT 
discriminatory power increases with the number and diversity of observed parameters. 
Unlike in Russell et al. (2014), where we used total column remote sensing-inferred optical properties 
which are often representative of a mix of different AMTs, the AMTs in this study are defined, 
characterized, and derived using simultaneous gas-phase, chemical and optical instruments on the same 180 
aircraft. This reduces errors in measurements/retrievals and errors due to spatio-temporal colocation (i.e., 
i-ii). It also reduces ambiguities in the selection of the AMT training dataset (i.e., iii), and we specifically 
investigate the strengths and weaknesses of optical properties used as tools to define AMTs and how 
much these optical properties can capture dominant aerosol speciation (i.e., iv). 
 185 
The objectives of this study are to: 
• Prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act 
as a training (i.e., reference) AMT dataset, and 
• Evaluate the ability of airborne in-situ measured aerosol optical properties that are suitable to be 
retrieved from space to successfully extract these AMTs. 190 
 

2. Data and Method 

2.1 Method 

We select NASA DC-8 airborne in-situ data collected during the Study of Emissions and Atmospheric 
Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) project (Toon et al., 2016), 195 
which was carried out in August–September 2013 over North America with a strong focus on the 
Southeastern US (SEUS). Measurements are collected at the altitude of the aircraft and are not 
representative of the full column satellite retrieval. Although these airborne in situ observations lack the 

https://doi.org/10.5194/acp-2021-761
Preprint. Discussion started: 24 September 2021
c© Author(s) 2021. CC BY 4.0 License.



6 
 

widespread coverage of surface networks or satellite retrievals, their benefits include measuring a wide 
variety of gas-phase species, aerosol types and aerosol optical properties (Toon et al., 2016).  200 
 
Figure 1 illustrates the overall method in this study. We proceed as follows: 
1. We use gas phase and aerosol chemical (not optical) measurements to prescribe source-based AMTs 
(called PS-AMTs) These measurements better characterize the aerosol properties in these AMTs 
compared to observations of aerosol optical properties, 205 
2. We investigate a suite of measured aerosol optical parameters for each PS-AMT, and then determine 
the most useful and well separated aerosol optical properties, 
3. We use the set of aerosol optical parameters defined in the second step above to define optical-based 
class definitions (called DO-Class), including means, variances and covariances. In other terms, in this 
step, we form the mathematical definitions of the classes, 210 
4. We derive Optical-based AMTs (called DO-AMTs) using the set of aerosol optical properties defined 
in the second step above, the DO-Class defined in the third step above and the SCMC method for a set of 
observations that was not included in the training data sets, 
5. We evaluate the ability of airborne aerosol optical properties to successfully extract PS-AMTs by 
comparing PS-AMTs and DO-AMTs. 215 
In Fig. 1, we illustrate AMTs as wolves, and their optical properties as their tracks. The second and 
third step consist in describing the optical properties (or tracks) of each AMT (or wolf). The fourth step 
consists in inferring an AMT (or wolf) from its optical properties (or tracks). The fifth and last step 
consists in comparing the inferred to the initial AMT (or wolf). 
 220 
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Figure 1: Overall method in this study; PS-AMTs, DO-Class and DO-AMTs are Prescribed Source-
based Air Mass Types (AMTs), Defined Optical-based Class definitions and Derived Optical-based 
AMTs. EAE: Extinction Angstrom Exponent; SSA: Single Scattering Albedo; dSSA: difference in 
SSA; AAE: Absorption Angstrom Exponent; AC: absorption coefficient; RRI: real Refractive 225 
Index; SCMC: pre-Specified Clustering and Mahalanobis Classification. The concept of the wolf 
and its tracks is based on the dragon and its tracks in Bohren and Huffman (1983). 
 
In the first step of Fig.1, the PS-AMTs are defined using mostly gas measurements and a method based 
on Espinosa et al. (2018) and Shingler et al. (2016) (see Fig. 2 and section A.1.3 in the appendix for more 230 
information). Section 3.1 describes these PS-AMTs, their location and composition in further detail 
during SEAC4RS.  
 

Aerosol Optical Property Measurements: EAE, SSA, dSSA, AAE, AC, RRI
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Figure 2: Classification scheme for pre-specifying Air Mass Types (PS-AMTs) using mostly gas 
measurements and a method based on Espinosa et al. (2018) and Shingler et al. (2016) and modified 235 
to include Marine and two different types of BB AMTs. See section A.1.3 in the appendix for more 
information. 
 
In the second step of Fig.1, once the PS-AMTs are defined, we test whether these PS-AMTs exhibit 
distinct aerosol optical properties and then, select the most useful and well separated aerosol optical 240 
properties. To select the most useful and well separated aerosol optical properties for each PS-AMT, we 
define a cluster in multi-dimensional parameter space, which is composed of all the data points (values 
of optical properties) in that PS-AMT category. Then, for each point in the data set, we calculate the 
nearest cluster using the Mahalanobis distance (Mahalanobis, 1936). If the nearest cluster to a point 
corresponds to the PS-AMT, then that point is “steady”. Let us note that this method was used in previous 245 
studies (e.g., Espinosa et al. (2018)) and is described in further detail in section A.1.4 in the appendix. 
Section 3.2 describes the results from this step i.e., the most useful and well separated aerosol optical 
properties in our study. 
 
In the third step of Fig.1, the DO-Class use the first “steady” (i.e., well separated) half of all valid aerosol 250 
optical observations. Once the training (or reference) clusters DO-Class are defined, we use the 
Mahalanobis distance to filter outliers from our training dataset and further “purify” them. Similar to 
Russell et al. (2014), we delete points that have less than 1% probability of belonging to each pre-specified 
DO-Class. We also delete from a specified cluster any points that are closer (in terms of Mahalanobis 
distance) to a different cluster. Note that unlike in Russel et al. (2014), this additional filtering step (to the 255 
“steady” filtering step) has a minimal impact on the training dataset in our study.  
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In the fourth step of Fig.1, a test data set is analyzed and classified. This test data set is based on 
independent observations and must be of the same nature than the training dataset. In this study, our test 
dataset is composed of independent airborne in-situ optical properties. It is the other half of all valid 
aerosol optical observations (DO-Class are defined using the “steady” portion of the first half). We derive 260 
optical-based AMTs (DO-AMTs) to each test data point using the SCMC method and the DO-Class. This 
is achieved by assigning the test datapoint to the DO-Class that shows minimum Mahalanobis distance in 
a multi-dimensional space made of the best suited and most separable optical properties. We refer the 
reader to section 2 of Russell et al. (2014) or Burton et al. (2012) for a thorough description of the SCMC 
method. Section 3.3 describes the results from these steps i.e., the defined optical- and derived optical-265 
based air mass types in our study. 
In the fifth and last step of Fig. 1, we evaluate the ability of airborne aerosol optical properties to 
successfully extract PS-AMTs by comparing the PS-AMTs and DO-AMTs. Section 3.4. describes the 
results of this final step in our study. 
 270 

2.2 Instruments and Observations 

A major strength of our study is the use of in situ gas-phase, chemical and optical instruments on the same 
NASA DC-8 research aircraft during the SEAC4RS campaign. Table 1 lists the various airborne in situ 
instruments and products used in this study. It also shows the size of the aerosol sampled by each 
instrument, the way we use the products in our study (i.e., step 1 through 4 in Fig. 1) and important 275 
references for each instrument. 
Note that instead of simply using the standardized SEAC4RS merged dataset, a lot of effort was dedicated 
to carefully collocate, combine (section A.1.2 in the appendix), cloud-screen, filter, humidify (i.e., 
converted from dry to ambient conditions), compute and interpolate/extrapolate optical parameters to 
specific wavelengths (section A.1.1 in the appendix). 280 
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Instruments Products Sampled Aerosol Size Usage  References 
1 PTR-MS, DACOM, 

TD-LIF, NOyO3 
Acetonitrile, isoprene, 
monoterpene, CO, NO

2
 

- (1) PTR-MS (Mikoviny et 
al., 2010); DACOM 
(Fried et al., 2008); TD-
LIF (Cleary et al., 
2002); NOyO3 (Ryerson 
et al., 2012) 

2 PALMS Internally mixed 
Sulfate/ Organic/ 
Nitrate (SON), Biomass 
Burning (BB), Sea salt, 
and Dust particle types 

<5µm dry diameter (1), (*) 
 

Murphy et al., 2006 
Froyd et al., 2019 

3 SAGA Cl, Br, NO3, SO4, C2O4, 
Na, NH4, K, Mg, Ca 

<4µm dry diameter (*) Dibb et al., 2003 

4 AMS OA, sulfate, 
ammonium, nitrate 

0.02 - 0.8 µm 
(trapezoidal 
transmission efficiency, 
D50 at 0.035 and  0.35 
µm) 

(*) DeCarlo et al., 2006; 
Canagaratna et al., 
2007; Hu et al., 2015; 
Guo et al., 2021 

5 SP2 BC 0.1-0.5µm (BC 
component, only) 

(*) Perring et al., 2017      

6 LARGE TSI and 
PSAP 

Absorption, Scattering 
and Extinction 
Coefficient (AC, SC 
and EC) at 450, 550 and 
700 nm 

<5µm dry diameter for 
Dry Total Scattering 
Coefficients at 450, 
550, and 700 nm (TSI 
Neph) and Total 
Absorption 
Coefficients at 467, 530 
and 660 nm (PSAP) 
 

(2-3-4) Ziemba et al., 2013; 
McNaughton et al., 
2007 

7 DASH-SP Real Refractive Index 
(RRI) at 532nm 

0.18-0.40µm dry 
diameter 

(2-3-4) Sorooshian et al., 2008; 
Shingler et al., 2016 

8 PI-Neph Real Refractive Index 
(RRI) at 532 nm 

<5 µm dry diameter (2-3-4) Dolgos and Martins, 
2014; Espinosa, 2017, 
2018 

Usage (see step 1-4 in Fig. 1): 
(1) Pre-specify PS-AMTs 
(*) Verify/ further define PS-AMTs 
(2-3-4) Derive DO-AMTs to assess ability of aerosol optical properties to observe PS-AMTs 

 
Table 1: Instruments, products, sampled aerosol size, usage and references relevant to this study. 285 
More information on the instruments during SEAC4RS can be found here: 
https://espo.nasa.gov/home/seac4rs/content/Instruments. 
 
 
The first step in Fig. 1 (i.e., prescribe source-based PS-AMTs) uses the gas-phase and aerosol instruments 290 
in line 1-2 of Table 1. The following steps in Fig. 1 (i.e., define the most useful and well separated optical 
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properties, define optical-based classes and derive optical-based AMTs) use the optical instruments in 
lines 6-8 of Table 1. Let us emphasize that the instruments in Table 1 sample different aerosol sizes. This 
is especially true for the DASH-SP instrument, which sampled particles with dry diameters between 180 
and 400 nm during SEAC4RS (Shingler et al., 2016). In contrast, the sampled air was provided to the PI-295 
Neph instrument through the NASA LARGE shrouded diffuser inlet, which sampled isokinetically and 
is known to have a 50% passing efficiency at an aerodynamic diameter of at least 5 μm at low altitude 
(McNaughton et al., 2007; Espinosa et al., 2017). 
In this study, we use the sixteen aerosol optical parameters listed in Table 2 (i.e., six parameters at 3 
wavelengths and/or 3 combinations of wavelengths) and derived from the optical instruments in line 6-8 300 
of Table 1. These optical parameters were computed from the initial measurements and using the 
equations listed in the second column of Table 2 (see section A.1.1 in the appendix for more information 
on these calculations). 
 
 305 

Aerosol Optical Parameters Computed Using 
Extinction Angstrom Exponent, EAE LARGE EC and Eq. 7.1.1.a 
Absorption Angstrom Exponent, AAE LARGE AC and Eq. 7.1.1.c 
Single Scattering Albedo, SSA LARGE EC, SC and Eq. 7.1.1.b 
Difference in SSA at two wavelengths, dSSA LARGE EC, SC and Eq. 7.1.1.b 
Absorption Coefficient, AC LARGE EC, SC and Eq. 7.1.1.d 
Real Refractive Index, RRI  PI-Neph or DASH-SP and LARGE 

 
Table 2: EC, SC and AC stand for Extinction, Scattering and Absorption Coefficients i.e., in situ 
aerosol optical parameters provided at a given aircraft altitude in this study. Wavelengths are (i) 
450, 550 and 700 nm for SSA and AC and (ii) 450-550, 550-700 and 450-700 nm for EAE, AAE and 
dSSA.  310 
 

3. Results 

3.1 Prescribe Source-based Air Mass Types (PS-AMTs) 

Figure 3 shows the PS-AMTs pre-specified using mostly measured gas phase compounds and the 
method described in Fig. 2. 315 
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Figure 3: Air mass types pre-specified 
(PS-AMT) using mostly gas 
measurements and methods based on 320 
Espinosa et al. (2018) and Shingler et al., 
(2016) (see Fig. 2). The number of data 
points assigned to each PS-AMTs are 
N=31 BBAg., N=382 BBWild., N=646 
Bio. and N=46 PollDust PS-AMTs. PS-325 
AMTs Marine and Urban were not 
analyzed in the remainder of this study 
due to their limited number of data 
points (Urban in black shows N=9 and 
Marine in blue shows N=7). Green 330 
triangles show the location of 
agricultural fires according to Liu et al. 
(2016). 

 
During SEAC4RS, according to Kim et al. (2015) and Wagner et al. (2015), the campaign-averaged 335 
aerosol mass was composed of mostly Organic Aerosol (OA) that is internally mixed with sulfate and 
nitrate at all altitudes over the southeastern U.S (SEUS) i.e., 55% OA and 25% sulfate mass on average 
according to ground-based filter-based PM2.5 (Particulate Matter concentration with an aerodynamic 
diameter smaller than 2.5 µm) speciation measurements from EPA CSN sites. This is consistent with the 
findings of Edgerton et al. (2006), Hu et al. (2015), Xu et al. (2015) and Weber et al. (2007) which show 340 
that PM2.5 is dominated by SOA and sulfate during the summer in SEUS. Aircraft data show that 60% 
of the aerosol column mass (i.e., mostly OA and sulfate) is contained within the mixing layer (Kim et al., 
2015). 
GEOS-Chem attributes OA mass as 60% from biogenic isoprene and monoterpenes sources (with a 
significant role of isoprene in accordance with Hu et al. (2015), Marais et al. (2016), Zhang et al. (2018), 345 
Jo et al. (2019), and Liao et al. (2015)), 30% from anthropogenic sources and 10% from open fires (Kim 
et al., 2015). Espinosa et al. (2018) confirms the domination of biogenic emissions in the SEUS (see their 
Fig. 2). Fig. 3, in agreement with these studies, shows a majority of biogenic PS-AMTs (in green, N=646), 
mostly in the SEUS during SEAC4RS. 
During SEAC4RS, the air sampled by the DC8 was also affected by both long-range transport of wildfire 350 
from the west (Peterson et al., 2015; Saide et al., 2015; Forrister et al., 2015; Liu et al., 2017) and local 
agricultural fires mostly from the burning of rice straw along the Mississippi River Valley (Liu et al., 
2016). Fig. 3, in agreement with these studies, shows BBWild PS-AMT in the West (in grey, N=382) and 
BBAg PS-AMT in the East (in salmon, N=31). Both agricultural and wildfire smoke is mainly composed 
of OA, which includes a substantial amount of light-absorbing brown carbon, BrC (Liu et al., 2017), 355 
produced mostly by smoldering combustion (Reid et al., 2005; Laskin et al., 2015).  

Ag. Fires from Liu et al. [2016] 
Bio PD BBAg.    BBWild.    Urban    Marine
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Although Fig. 3 also shows Urban and Marine PS-AMTs in the SEUS, these PS-AMTs were not further 
analyzed in the remainder of this study due to their limited number of data points (Urban in black with 
N=9 and Marine in blue with N=7 data points).  
Figure 4 describes the aerosol chemical signatures of the principal PS-AMTs using the PALMS, SAGA, 360 
AMS and SP2 instruments (see line 2-5 in Table 1 for more information on these instruments and their 
products). Note that some aerosol components (e.g., Organic, Sulfate, Nitrate) are very general chemical 
indicators and much less specific than the gas-phase chemistry they are trying to predict. These aerosol 
components are nonetheless directly comparable to aerosol chemical components simulated in chemical 
transport (CTM) (e.g., GEOS-Chem, the Goddard Chemistry, Aerosol, Radiation, and Transport model, 365 
GOCART, the Weather Research and Forecasting model coupled with Chemistry, WRF-Chem) and air 
quality (AQ) models (e.g., the Community Multiscale Air Quality Modeling System, CMAQ).  
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 370 
 

Figure 4: (a) Average PALMS normalized volume concentration per PS-AMT. PALMS 
normalization uses the sum of BB particles, sulfate-, organic- and nitrate-rich particles from non-
BB sources, mineral dust, sulfate-organic-nitrate (SON) particles without a dominant sub-

a) PALMS Particle Types

b) SAGA Aerosol Components

c) AMS and SP2 Aerosol Components
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component, and sea-salt (the latter two PALMS aerosol types are not shown and constitute the 375 
remainder). (b) Averaged and normalized SAGA mass concentrations per PS-AMT; normalization 
uses the sum of all the SAGA components in the x-axis (c) Normalized mass fractions of AMS 
sulfate, ammonium, nitrate, OA, SP2 BC and ratio of SP2 BC and AMS OA per PS-AMT. The 
AMS inorganic mass fraction of sulfate, ammonium and nitrate are normalized to the sum of 
sulfate, ammonium, and nitrate. The AMS and SP2 total Non-Refractory NR-mass fraction of OA 380 
and BC are normalized to the sum of OA, BC, sulfate, ammonium, and nitrate. In each blue box, 
the red horizontal line indicates the median, and the bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively. The black whiskers extend to the most extreme data points 
not considered outliers, and the outliers are plotted individually using red points. PS-AMTs Marine 
and Urban are not analyzed due to their limited number of data points (N=9 Urban and N=7 Marine 385 
PS-AMTs). 
 
Note that the four aerosol instruments in Fig. 4 measure different aerosol properties. For instance, AMS 
and SAGA measure bulk concentrations of chemical sub-components (e.g., sulfate) whereas  
PALMS classifies individual particles into several size-resolved types, including mineral dust, BB and 390 
several non-BB types that have varying amounts of internally mixed sulfate, organic, and nitrate.  
 
The PS-AMTs on Fig. 4 show expected chemical features: 
• The BB PS-AMTs (i.e., BBAg. and BBWild.) record high BB particle concentrations from 
PALMS in Fig. 4a, high nitrate (Nit), ammonium (Amm), calcium (Ca) and potassium (K) concentrations 395 
from SAGA in Fig. 4b, high OA (i.e., >0.8) from AMS and high BC mass fractions from SP2 in Fig. 4c, 
in agreement with many other studies (e.g., Cubison et al., (2011); Hecobian et al., (2011); Jolleys et al., 
(2015), Guo et al. (2020)). The BB PS-AMTs also record higher AMS ammonium and nitrate, compared 
to Bio. and PollDust PS-AMTs in Fig. 4c. This is due to ammonium nitrate (NH4NO3) forming in fires 
by neutralization of freshly formed nitric acid from NOx oxidation with an excess of primary ammonia 400 
(e.g., Guo et al. (2020)). 
• The Bio. PS-AMTs record higher non-BB organic-rich particles from PALMS in Fig. 4a, higher 
SAGA sulfate concentrations in Fig. 4b, smaller nitrate and ammonium (i.e., relatively acidic) and higher 
sulfate particle concentrations (from e.g., coal plants) from AMS in Fig. 4c, compared to the BB PS-
AMTs. As such, the Bio. PS-AMTs in this study are typical of the SEUS region (e.g., (Kim et al., 2015 405 
and Hu 2015)). When using Positive Matrix Factorization (PMF) (Ulbrich et al., 2009) on the AMS 
measurements, most of the organic aerosols in the Bio. PS-AMTs is composed of biogenic SOA. The 
Bio. PS-AMTs also record significantly lower BC concentrations from the SP2 as well as BC to OA ratios 
from the AMS and SP2 in Fig. 4c, compared to the BB and PollDust PS-AMTs, in accordance with e.g., 
Hodzic et al. (2020). 410 
• The PollDust PS-AMTs record, as expected, high dust concentration from PALMS in Fig. 4a and 
high calcium (Ca) and magnesium (Mg) from SAGA in Fig. 4b. In addition, the PollDust PS-AMTs also 
include BB from PALMS in Fig. 4a and possibly a minor sea salt component (i.e., high Na and Cl) from 
SAGA in Fig. 4b as well as relatively high sulfate from SAGA and AMS in Fig. 4c. A compositional 
picture of the PollDust PS-AMTs from PALMS in section A.2.3 in the appendix shows dust 415 
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predominately in the coarse mode but also an accumulation mode that contains a variety of particle types, 
all of which contain sulfate and organic material. 
 
The analysis in Fig. 4 confirms that the gas-phase-derived PS-AMTs indeed have distinct aerosol 
chemical properties. Therefore, we explore whether these PS-AMTs can be derived using only aerosol 420 
optical properties. 
 

3.2 Determine Most Useful and Well Separated Aerosol Optical Properties 

As described in section 2.1, we need to test if the PS-AMTs (from section 3.1) exhibit distinct aerosol 
optical properties. This is an essential first step to optimize the final prediction of AMTs using aerosol 425 
optical properties (DO-AMTs).  
 
We start with the sixteen aerosol optical parameters in Table 2 (i.e., EAE, SSA, dSSA, AAE and AC at 
different combinations of 450, 550 and 700 nm and RRI at 532 nm). Section A.2.1 in the appendix 
illustrates the ranges of these sixteen aerosol optical parameters, classified by PS-AMTs. Given that many 430 
of these parameters have similar properties, we select six out of these sixteen aerosol optical parameters, 
to simplify the analysis and presentation of results. To do that, we first look at the percentage of points 
unambiguously retrieved or “steady” (i.e., points that are well separated from other clusters and, hence, 
remain in their initial clusters) when using different combinations of two out of sixteen aerosol optical 
parameters across all four PS-AMTs. We first select parameters AAE between 450 and 550nm and RRI 435 
at 532nm as they form the only combination of two parameters to achieve >65% “steady points” for all 
four PS-AMTs (see Fig. A5 in the appendix). The rest of the six optical parameters are either chosen at 
550nm (i.e., closest wavelength to 532 nm) or between 450 and 550nm. As a result, the six parameters 
we choose for the remainder of this study are dSSA 450-550 nm, RRI 532 nm, EAE 450-550 nm, AAE 
450-550 nm, SSA 550 nm and AC at 550nm. Among these parameters, the usefulness of parameters dSSA 440 
450-550 nm, EAE 450-550 nm, SSA 550 nm and AC at 550nm only becomes apparent in a 3-D parameter 
space (see Fig. A6 and its orange boxes in the appendix, which record >65% “steady points” for many 
combinations of three parameters among these six selected aerosol optical parameters). 
 
Figure 5 illustrates the range of these six aerosol optical properties for each PS-AMT. Fine particles (i.e., 445 
BBWild., BBAg. and Bio. PS-AMTs with higher EAE values) show mostly well-separated variability in 
RRI, AAE and dSSA. Coarse particles (i.e., PollDust PS-AMT with lower EAE values) is optically 
distinctive from the other PS-AMTs, particularly showing lower RRI, higher AAE and higher dSSA. In 
agreement with Selimovic et al. (2019; 2020) in Missoula, MT, we seem to also observe separate optical 
signatures, and more specifically different AAE ranges, for BBAg. and BBWild. PS-AMTs during 450 
SEAC4RS.  
The aerosol optical properties of the PollDust PS-AMTs in this study differ from the ones of the “pure 
dust” AMT in Russel et al. (2014). The “pure dust” in Russel et al. (2014) is based on AERONET 
measurements in various dusty regions of the world. In this study, PollDust PS-AMT show a median EAE 
of ~1.3 between 450 and 550 nm and a median RRI of ~1.4 at 532 nm on Fig. 5, compared to respectively 455 
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~0 between 491 and 864 nm and 1.53 at 670 nm for AERONET-based “pure dust” in Russel et al. (2014). 
We show that the higher PollDust PS-AMT EAE values in our study are due to the presence of 
accumulation mode non-dust aerosols, which constitute a significant contribution to the total number and 
volume concentration of particles (see section A.2.3 in the appendix for a compositional picture of 
PollDust PS-AMT). Similarly, we also suggest that the low PollDust PS-AMT RRI values are due to its 460 
non-dust accumulation mode, which is generally more hygroscopic than pure dust and may have a larger 
contribution to the PollDust total Growth Factor (GF, see Eq. 7.1.1e). We refer the reader to section A.2.1 
in the appendix for a closer look at RRI values in the case of PollDust PS-AMTs from the PI-Neph and 
DASH-SP instruments separately. 
 465 

 
 
Figure 5: Optical characterization of PS-AMTs using the LARGE, PI-Neph and DASH-SP 
instruments (see Table 1). In each blue box, the red horizontal line indicates the median, and the 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black 470 
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually using red points. AAE: Absorption Angstrom Exponent, AC: Absorption Coefficient, 
dSSA: difference in Single Scattering Albedo, SSA: Single Scattering Albedo, EAE: Extinction 
Angstrom Exponent, RRI: Real Refractive Index. Numbers in the title correspond to the number 
of points behind each box-whisker for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs. 475 
 
Figure 6 shows “steady” values (i.e., fraction of cases of a given type that are correctly identified; see 
section 2.1) for combinations of two, three and four optical parameters out of the six selected aerosol 
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optical parameters (see Fig. 5) and four AMTs (i.e., BBAg., BBWild., Bio. and PollDust). Moving 
forward, we select the sixteen combinations of optical parameters highlighted by grey boxes and black 480 
dots in Fig. 6, as they show > 65% “steady points” (i.e., successfully separate aerosol signatures) for PS-
AMTs BBAg., BBWild., Bio. and PollDust. These combinations are shown as black squares in the table 
of Fig 8. 
 
 485 

 
Figure 6: Percentage of points “steady” (i.e., fraction of cases of a given type that are correctly 
identified; see section 2.1) in the lower panel when using different combinations of aerosol optical 
parameters in the upper panel for each PS-AMT. Grey boxes and black points depict combinations 
of optical parameters showing > 65% “steady points” for PS-AMTs BBAg., BBWild., Bio. and 490 
PollDust. RRI: Real Refractive Index, AAE: Absorption Angstrom Exponent, AC: Absorption 
Coefficient, dSSA: difference in Single Scattering Albedo, SSA: Single Scattering Albedo, EAE: 
Extinction Angstrom Exponent 
 
Let us note that for some cases, the fraction of “steady” points seems to decrease when adding classifying 495 
variables. These cases were investigated and are mostly due to fewer data points that are non- “steady” 
when adding classifying parameters, out of an already small total number of datapoints (e.g., a 
combination of EAE, dSSA, AAE and RRI show <65% “steady points” for BBAg. PS-AMT, compared 
to >65% “steady points” for a combination of EAE, AAE and RRI; this is due to 4 more “steady” points 

>65% “steady points” for all four AMTs Bio PollDust BBAg.    BBWild. 
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(N=18) when using a combination of 3 parameters, compared to 4 parameters (N=14), out of a total of 500 
N=26 cases). 
 
Moreover, we suggest that higher aerosol loadings within the air masses allow for more accurate 
identification by optical properties, due to higher accuracy of the aerosol optical properties themselves. 
For example, we have seen an increase from ~80% to 100% “steady” data points in the BBWild. PS-505 
AMT when using EAE, AAE and RRI when extinction coefficients increased from 30-40 m-1 Mm-1 to 
60-70 Mm-1 (number of data points between N=11 and N=20). 
 

3.3 Define Optical-based Class Definitions and Derive Optical-based Air Mass Types (DO-Class 
and DO-AMTs) 510 

 
Our goal in this section is to derive AMTs (DO-AMTs), followed by a comparison between DO-AMTs 
and the initial PS-AMTs to test the ability of aerosol optical properties alone to capture PS-AMTs.  
As described in section 2.1, to derive DO-AMTs using the SCMC method, we need (i) a combination of 
useful and well separated optical properties (e.g., EAE, AAE and RRI or combination #4 in Table of Fig. 515 
8), (ii) a set of defined classes or clusters of reference (i.e., a training dataset that we call DO-Class) and 
(iii) the computation of the Mahalanobis distance between each observation we want to classify in a test 
data set and each of the clusters from the training dataset.  
 
We introduce Table 3, which records the number of data points behind each step in our study. 520 
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Table 3: Number of data points per AMTs behind each step in our study. PS-AMTs Marine and 
Urban are not analyzed due to their limited number of data points (N=9 Urban and N=7 Marine 
PS-AMTs). EAE: Extinction Angstrom Exponent, AAE: Aerosol Absorption Exponent and RRI: 525 
Real Refractive Index. 
 
The first line of Table 3 shows the number of data points per PS-AMTs (see section 3.1). Then, it shows 
the valid number of data points behind AAE (Fig. 5a), RRI (Fig. f) and a combination of EAE, AAE and 
RRI (see respectively line 2, 3 and 4 of Table 3). It also shows the “steady” number of data points per PS-530 
AMT in line 5 in the case of a combination of EAE, AAE and RRI (see Fig. 6). 
 
To create the training data set DO-Class (line 7 in Table 3), we select the “steady” portion of half (every 
other sample) of the entire set of valid datapoints (line 6 of Table 3). The test data set that we want to 
classify as DO-AMTs is the other half of the entire set of valid datapoints (line 8 in Table 3). This DO-535 
AMT dataset is made of “steady” and non- “steady” data points.  
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Figure 7 illustrates the separability of the DO-Class in the 3-D space made of aerosol optical parameters 
EAE, AAE and RRI. The regions of the DO-Class are described by colored ellipses representing the mean, 
variance, and covariance of the DO-Class training set. It also shows that most of the DO-Class represent 540 
the original source-based PS-AMTs (represented by colored triangles on Fig. 7). However, let us note 
that a distinct portion of the Bio. PS-AMTs (green triangles) seem to not be represented by the Bio. DO-
Class (green ellipse). These Bio. PS-AMTs show higher AAE and lower EAE values and mostly fall into 
the PollDust DO-Class instead (red ellipse). 
 545 

 
 Figure 7: DO-Class definition (solid and dashed 
ellipses colored by AMTs defining boundaries of the 
DO-Class clusters; no DO-Class data points are 
plotted) and prescribed source-based PS-AMTs 550 
(triangles colored by AMTs). 75% of the DO-Class 
are contained in the solid ellipses and 50% of the DO-
Class are contained in the dashed ellipses. RRI: Real 
Refractive Index, AAE: Absorption Angstrom 
Exponent, EAE: Extinction Angstrom Exponent. 555 
 
Line 9 in Table 3 shows the number of DO-AMTs 
(correctly and incorrectly) classified as BBAg., 
BBWild., Bio. or PollDust AMTs using the combination 
of EAE, AAE and RRI as an example, the SCMC method 560 
and the DO-Class reference clusters. Most points from 
the test data set were assigned an AMT (see N=381 
assigned DO-AMTs on line 9, compared to N=8 
unknown on line 10 of Table 3). Unclassified/unknown 
DO-AMTs are those where the 3-D data point is outside 565 
the 99% probability surface for all four DO-Classes. 
 

3.4 Compare Optical-based Compared to Source-
based Air Mass Types (DO- vs. PS-AMTs) 

Once we have derived DO-AMTs from optical properties 570 
(i.e., inferred our wolf based on its tracks in Fig. 1), we 

need to assess how many of the DO-AMTs agree with those originally assigned as PS-AMTs. Line 11 in 
Table 3 shows the number of prescribed PS-AMTs in each category when only looking at the test dataset 
to derive DO-AMTs on line 8 of Table 3 (N=389). Line 12 in Table 3 shows the number of DO-AMTs 
that are identical to PS-AMTs. Line 13 and 14 show the same result, but as a percentage of the respectively 575 
derived DO-AMTs or prescribed PS-AMTs in the same category. In Table 3, we find 77% BBAg., 79% 
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BBWild., 73% Bio. and 81% PollDust PS-AMTs are correctly reflected in the DO-AMTs. This result can 
also be seen for combination #4 in Fig. 8 (i.e., EAE, AAE and RRI).  
Fig. 8 illustrates the percentage of identical DO-AMTs to PS-AMTs when using each of the 16 
combinations of optical parameters illustrated by black squares in the table of Fig. 8. This percentage, 580 
like line 14 in Table 3, is computed as the number of DO-AMTs that agree with those originally assigned 
as PS-AMTs, compared to the total number of prescribed PS-AMTs in each category in our test dataset 
(e.g., line 11 in Table 3). 
 

 585 
Figure 8: Identical DO-AMT and PS-AMTs as a percentage of prescribed PS-AMTs in each 
category when using the different combinations of optical parameter listed in the table to the right 
(black squares show combination on each line) and for the four PS-AMTs BBAg. (salmon), BBWild. 
(grey), Bio. (green) and PollDust (red). Back horizontal dashed lines show 60% and 70% identical 
DO-AMT and PS-AMTs. 590 
 
According to Fig. 8, the entire sixteen combinations of aerosol optical properties EAE, AAE, SSA, RRI, 
AC and dSSA listed in the Table of Fig. 8 as black squares seem to capture both the Bio. and BBWild. 
PS-AMTs (>~60% identical DO-AMT and PS-AMTs in green and grey solid lines in Fig. 8). We remind 
the reader that these PS-AMTs are mostly based on gas measurements (see Fig. 2) and are dominated by 595 
different aerosol species (see Fig. 4).  
On the other hand, fewer combinations of aerosol optical parameters seem to adequately capture the 
BBAg. and PollDust PS-AMTs. Further analysis shows that, in average, most DO-AMTs assigned to the 
BBAg. and PollDust categories are, in fact, misclassified and failing to capture the Bio. PS-AMTs. As 
shown earlier in Fig. 7, we suggest these DO-AMTs fail to capture the Bio. PS-AMTs because the Bio. 600 
DO-Class might not be entirely representative of the Bio. PS-AMTs (see green triangles outside of the 
green ellipses in Fig. 7).  
Note that three combinations of aerosol optical parameters, namely #4 (EAE, AAE and RRI), #12 (EAE, 
RRI AC and dSSA) and #13 (EAE, AAE, RRI and AC) in Fig. 8, seem to capture all four PS-AMTs 
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particularly well (>~70% identical DO-AMT and PS-AMTs). Let us mention that results linked to the use 605 
of the absorption coefficient, AC, an extensive property that is dependent on aerosol loading, is likely to 
be unique to this study and might not be representative of any other field campaign. 

4. Conclusion 

One desire of our scientific community is to ultimately translate the space-based “total atmospheric 
column effective” AMTs such as biomass burning, dust, urban industrial, and polluted marine into 610 
chemical species with defined emission source inventories and formation/aging chemistry such as sulfate, 
BC, OA, SOA, nitrate, dust, or sea salt to better improve models. Fully achieving that goal might not be 
feasible and progress can only be incremental. This study constitutes a first step (many steps remain) 
towards the goal of translating the space-based “total atmospheric column effective” aerosol optical 
properties and derived optical-based AMTs into source-based AMTs. 615 
 
Current satellite derived AMTs inferred by various techniques are useful to provide spatial context to 
support other observations of aerosols and clouds or evaluate other aerosol type classifications. However, 
these satellite derived AMTs are subjectively/ambiguously defined and might often be misclassified. 
 620 
The AMTs in this study are defined, characterized, and derived using gas-phase, chemical and optical 
instruments on the same aircraft. This reduces errors in measurements/retrievals, due to spatio-temporal 
colocation and ambiguities in the selection of the AMT training dataset. We also specifically investigate 
the strengths and weaknesses of various aerosol optical properties used as tools to define AMTs and how 
much these optical properties can capture dominant aerosol speciation. 625 
 
We first define AMTs using mostly airborne gas-phase measurements during SEAC4RS. We find distinct 
optical signatures for biomass burning (from agricultural/ prescribed or wildfires), biogenic and dust-
influence AMTs (Marine and Urban AMTs show too few data points to analyze). Useful aerosol optical 
properties to characterize these signatures are the extinction angstrom exponent between 450-550nm, the 630 
single scattering albedo at 550nm, the difference of single scattering albedo in two wavelengths between 
450-550nm, the absorption coefficient at 550nm, the absorption angstrom exponent between 450-550nm, 
and the real part of the refractive index at 532nm. We then use these aerosol optical properties, prescribe 
a well-separated AMT training dataset and use the pre-specified clustering and Mahalanobis classification 
method to derive optical-based AMTs during SEAC4RS. We find that by using any of sixteen 635 
combinations of these six optical parameters, over 65% of optical-based wildfire biomass burning and 
biogenic AMTs agree with their source-based analogue. We find that all four types studied (Biogenic, BB 
from wildfires, BB from agricultural fires, and polluted dust) when prescribed using mostly airborne in 
situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ 
aerosol optical properties over the US during SEAC4RS, such that more than 70% of optical observations 640 
are typed consistently with source-based analog. However, we find that misclassifications are not evenly 
distributed across the classes, and specifically the optically based classifications for BB from agricultural 
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fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results 
relating to those classes. 
 645 

5. Discussion 

We suggest a similar study should be performed using data from additional airborne field campaigns 
which have the necessary, or equivalent, gas-phase measurements to derive source based-AMTs and many 
of the critical optical properties to extract optical based-AMTs. First, this would provide more robust 
statistics e.g., particular attention should be given to revisit the BB from agricultural fires and polluted 650 
dust AMTs in this study. Second, this would provide more AMTs/sub-AMTs to analyze e.g., Urban and 
Marine AMTs should be visited during CAMP2EX (Clouds, Aerosol and Monsoon Processes-Philippines 
Experiment) or KORUS-AQ (An International Cooperative Air Quality Field Study in Korea) and other 
types of BB and at different aging stages should be visited during FIREX-AQ (Fire Influence on Regional 
to Global Environments and Air Quality). Finally, this would also help assess if these chemical and optical 655 
signatures are reproducible from one year to another. 
 
In this study, we obtained in situ aerosol optical signatures. Another essential step should be to examine 
optical signatures from space-based passive remote sensor(s), which derive total column effective 
ambient aerosol optical properties (instead of properties measured at the altitude of the aircraft in this 660 
study). One way to answer this question would be to compare the defined optical-based classes (DO-
Class) signatures (i.e., means, variances and covariances that define the classes) using collocated airborne 
in situ aerosol optical properties and total column aerosol optical properties measured or inferred by 
sunphotometry (e.g., airborne 4STAR, Spectrometers for Sky-Scanning Sun-Tracking Atmospheric 
Research (Dunagan et al., 2013) or ground-based AERONET). This DO-Class database could then be 665 
used as a optical-based training dataset to enable widespread derivation of optical-based AMTs (DO-
AMTs) using existing and future orbital and suborbital remote sensing instruments and networks. 
 
The space mission addressing the designated observable Aerosol, Cloud, Convection and Precipitation 
(ACCP) from the NASA decadal survey (National Academies 670 
of Sciences, Engineering, and Medicine, 2018) is currently designing its suborbital (airborne and ground-
based) component to address science questions that cannot be addressed from space (e.g., bridging 
satellite-inferred aerosol optical properties and aerosol speciation). This study illustrates how essential it 
is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before 
the implementation of future spaceborne missions and their corresponding suborbital field campaign(s) 675 
(e.g., upcoming spaceborne polarimeters SPEXone (Hasekamp et al., 2019) and Hyper-Angular Rainbow 
Polarimeter HARP-2 onboard the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) (Werdell 
et al., 2019) and the multi-viewing multi-channel multi-polarization imager (3MI) (Fougnie et al., 2018) 
to be launched in the next 3 years or the next generation of Earth Observing System (EOS) satellites 
addressing NASA’s ACCP). 680 
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Most of the six optical properties in this study (i.e., extinction angstrom exponent, single scattering 
albedo, difference of single scattering albedo, absorption coefficient, absorption angstrom exponent, and 
real part of the refractive index) are routinely derived by in situ and remote sensing 
instrumentation/networks (see Table 4). Some optical properties are more likely to present a higher 685 
uncertainty when measured from suborbital field campaigns and/ or from satellites. The real part of the 
refractive index, for example, although generally more uncertain, is highly desirable in many 
combinations of optical parameter to capture both the BB from wildfires and biogenic AMTs in this study. 
We strongly suggest future airborne campaigns consider including in situ measurements of AAE and RRI 
(very few of the campaigns to date flew PI-Neph and/or DASH-SP instruments) and a special attention 690 
should be given to deriving these parameters accurately from space. Our analysis has the advantage of 
providing alternate combinations of optical parameters when one optical parameter is either not available 
or too uncertain.  
 

 695 
 
Table 4: Frequency at which the six aerosol optical parameters in our study are routinely derived 
from aircraft and current passive satellite sensors and importance of these optical parameters in 
our study. RRI: Real Refractive Index, AAE: Absorption Angstrom Exponent, AC: Absorption 
Coefficient, dSSA: difference in Single Scattering Albedo, SSA: Single Scattering Albedo, EAE: 700 
Extinction Angstrom Exponent 
 
Ultimately, this technique and its results has the potential to provide a much broader observational aerosol 
data set to evaluate global transport models than is currently available. Current satellite derived AMTs 
seem to marginally help models. One way to assess models would be to directly compare satellite derived 705 

High Medium Low

Aerosol Optical Parameter 
Routinely 

Observed from 
Aircraft 

Routinely 
Observed from 

Satellites 

Importance 
as per this 

study 

Extinction Angstrom Exponent, EAE    

Single Scattering Albedo, SSA    

Difference in SSA, dSSA    

Absorption Coefficient, AC    

Aerosol Absorption Exponent, AAE    

Real Refractive Index, RRI    
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AMTs to AMTs derived from modeled optical properties (which are, in turn, computed from modeled 
chemical composition) using the same classification method (e.g., Taylor et al., 2015, Dawson et al. 
(2017), Nowottnick et al. (2015), Meskhidze et al. (2021)). However, it would be difficult to define the 
main source of errors in the case of a disagreement between model- and observation-based AMTs. 
Potential causes of such a disagreement could be a combination of observation and method-specific errors 710 
or model-specific errors (e.g., the assumed model size distribution, dry refractive index, growth factor per 
specie, mass extinction efficiency per species, estimated mass per species, RH, transport, chemical 
processing, emissions, and other physiochemical variables). Let us emphasize that the technique and 
results in this study, alone, will not be able to fully explain any discrepancies between model and 
observations. However, we suggest that the use of near-simultaneous gas-phase, chemical and optical 715 
instruments on the same aircraft restrict the causes of a disagreement between model- and observation-
based AMTs to mostly model-specific errors. Moreover, as the AMTs in this study are less ambiguously 
defined (e.g., to each AMT corresponds an averaged distribution of aerosol chemical composition), we 
suggest that this may allow the assessment (and, by extension, improvement) of a few aerosol processes 
simulated in CTMs. 720 
 

Appendix A 

A.1 Additional Information on Methods 

A.1.1 Method to Cloud-screen, Filter, and Humidify Airborne Observations 

This section describes the cloud-screening, filtering, humidification, and colocation involved in the 725 
computation of the final set of sixteen optical parameters (i.e., EAE, dSSA and AAE between 450-550, 
550-700 and 450-700 nm, Absorption coefficient, SSA at 450, 550 and 700nm and the RRI at 532 nm) in 
this study. 
 
The LARGE TSI nephelometer and PSAP instruments operate under dry conditions. The only 730 
measurement provided at ambient conditions is the extinction coefficient at 532nm.  
In this work, we need LARGE extinction and scattering coefficients at 450, 550 and 700nm at ambient 
conditions. To do that, we use the parameter “fRH550_RH20to80” at 550 nm provided by the LARGE 
f(RH) system (different from the TSI or PSAP instruments) and an exponential curve to obtain the impact 
of hygroscopic growth on the aerosol light scattering coefficient i.e., the scattering enhancement factor 735 
f(RH) at 450, 550 and 700 nm. f(RH) is defined as the ratio of scattering coefficients in ambient over dry 
conditions. Ambient scattering at 550 nm, for example, is computed as the product of dry scattering at 
550 nm and f(RH) at 550nm.  
 
We filter out any values of LARGE dry scattering coefficient at 450 nm ≤ 10 Mm-1 and LARGE ambient 740 
single scattering albedo coefficient (i.e., the ratio of scattering to extinction coefficient) at 863 nm ≤ 0.7. 
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Let us emphasize that, in this work, we use LARGE airborne in situ optical properties at the altitude of 
the aircraft (see first column of Table A1). However, we choose parameter names closer to what would 
be measured by remote sensing instruments, and which would represent a total or partial atmospheric 745 
column (see the second column of Table A1). 
 
In-situ optical parameters What we call them in this study 
Absorption Coefficient, AC Absorption Coefficient, AC 
Scattering Coefficient, SC Scattering Coefficient, SC 
Extinction Coefficient, EC Extinction Coefficient, EC 
Extinction Angstrom Coefficient, EAC Extinction Angstrom Exponent, EAE 
Scattering Angstrom Coefficient, SAC Scattering Angstrom Exponent, SAE 
Absorption Angstrom Coefficient, AAC Absorption Angstrom Exponent, AAE 
Single Scattering Albedo Coefficient, SSAC Single Scattering Albedo, SSA 

Table A1 In-situ optical parameters are provided at a given aircraft altitude in this study. The way 
we call these parameters is similar to what would be observed from remote sensing instruments. 
 750 
The Extinction Angstrom Coefficient (EAC) between wavelengths l1 and l2 is computed using the 
Extinction Coefficient (EC) as follows: 
EACl1,l2 = ln(ECl2- ECl1)/ ln(l1) -ln(l2)       (Eq. A.1.1a) 
 
The Single Scattering Albedo Coefficient (SSAC) at wavelength l1 is computed using the Scattering 755 
Coefficient (SC) and the Extinction Coefficient (EC) at l1 as follows: 
SSACl1 = SCl1/ECl1         (Eq. A.1.1.b) 
 
The Absorption Angstrom Coefficient (AAC) between wavelengths l1 and l2 is computed using the 
Absorption Coefficient (AC) as follows: 760 
AAC l1,l2 = ln(ACl2- ACl1)/ ln(l1) -ln(l2)      (Eq. A.1.1.c) 
 
And the Absorption Coefficient (AC) at wavelength l1 is computed as follows: 
AC = ECl1 - SCl1         (Eq. A.1.1.d) 
 765 
DASH-SP provides measurements of Real Refractive Index at 532 nm (RRI), RRIDASH-SP_dry, information 
on the particle hygroscopicity, 𝜅DASH-SP_dry,	and	the	particle	diameter,	DpDASH-SP_dry,	in dry conditions. 
We compute DASH-SP RRI in ambient conditions, RRIDASH-SP_ambient, using RRIDASH-SP_dry, 𝜅DASH-SP_dry, 
and the ambient relative humidity and temperature measurements, RHHSKP and THSKP, provided by the	
AIMMS-20	or	3D-winds instruments. First, we vary the Growth	Factor,	GFvar,	 from	1.02	 to	1.5	by	770 
increments	of	0.01	and	compute	the	particle	hygroscopicity,	𝜅var,	for	given	RHHSKP, THSKP and DpDASH-
SP_dry measurements as follows: 
 
𝜅var = (GFvar 3 - 1) x (1-	𝜅a) / 𝜅a	 	 	 	 	 	 	 (Eq.	A.1.1e) 
Where: 775 
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• 𝜅a = (RHHSKP  / 100%) / exp(Camb / ( GFvar x	DpDASH-SP_dry)) 
• Camb = (4 x ssa x Mw) / (R x THSKP x rw)  
• ssa = 0.0761-1.55 x 1e-4 x (THSKP -273);  
• Mw = 18.01528/1000 kg/mole 
• R = 8.3144598 780 
• rw = 1000 kg/m3 

 
We select	 the	 growth	 factor,	 GFvar, that provides	 the	 closest	 𝜅var	 value	 to	 the	 𝜅DASH-SP_dry	
measurement.	We	call	 this	growth	 factor	GFselect. Finally, we	compute	 the	ambient	RRI,	RRIDASH-
SP_ambient,	using	RRIDASH-SP_dry	and	GFselect obtained in the precious steps and equation 5 of Mallet et al. 785 
(2003) (based on Hänel (1976)) as follows: 
	
RRIDASH-SP_ambient = RRIw + (RRIDASH-SP_dry - RRIw) x (GFselect)-3     (Eq.	A.1.1f) 

Where	RRIw	=	1.33	
	790 
Let us note that Aldhaif et al. (2018) demonstrate the limitations of using the volume-weighted mixing 
rule approach above, especially in the presence of OA.	
	
The PI-Neph provides measurements of dry phase function (P11) and the second element of the scattering 
phase matrix (P12) at three wavelengths over an angular range spanning >170°. These measurements are 795 
fed into the GRASP (Dubovik et al., 2014)) algorithm to obtain retrieved values of spectral complex 
refractive index, a parameterized size distribution as well as derived optical properties like scattering 
coefficients. In this work we utilize these optical properties provided by PI-Neph in dry conditions: the 
scattering coefficients at 532 nm, scatPI-Neph_dry, the dry size distribution, dNdlnrPI-Neph_dry and the 
Refractive Index, RIPI-Neph_dry, composed of a real (RRI) and Imaginary part (IRI). First, we compute the 800 
“target” ambient scattering coefficient at 532 nm, scatPI-Neph_target, as the product of scatPI-Neph_dry and 
LARGE f(RH) measurements at 550nm. Second, we compute the ambient scattering coefficient at 532 
nm, scatPI-Neph_ambient, corresponding to each GFvar from 1 to 1.5 by increments of 0.01 using (i) a Mie code 
(Mishchenko et al., 2002) and, as input to the Mie code, (ii) the ambient size distribution and 
corresponding radii, computed from dNdlnrPI-Neph_dry and GFvar, (iii) the ambient refractive index 805 
computed from RIPI-Neph_dry and GFvar (see Eq. A.1.1f) and  a prescribed geometric standard deviation (i.e., 
~1.12, which results in similar computed and provided scatPI-Neph_dry values when using the same Mie code 
and initial parameters dNdlnrPI-Neph_dry and RIPI-Neph_dry). Third, we select GFvar (we	 call	 this	 growth	
factor,	GFselect) and corresponding RRIPI-Neph_ambient that records the minimum difference between scatPI-

Neph_ambient and scatPI-Neph_target. 810 
 
We compute ambient AMS and SP2 mass concentrations using the parameter “stdPT-to-
AMB_Conversion_AMS-60s” reported with the AMS data. SP2 Black Carbon (BC) standard 
concentration (referred to as “refractory black carbon”, and experimentally equivalent to elemental carbon 
at the 15% level (Petzold et al., 2013; Kondo et al., 2011; Perring et al., 2017)), originally in ng.m-3, is 815 
converted into µg.m-3 and scaled upwards, on a flight-by-flight basis, to represent the entire accumulation 
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mode (on average by 1.14). The AMS sulfate, ammonium and nitrate are normalized to the sum of sulfate, 
ammonium, and nitrate (see first row of Fig. 4c). The AMS OA and SP2 BC are normalized to the sum 
of OA, BC, sulfate, ammonium, and nitrate (see second row of Fig. 4c).  
In the case of SAGA, bromide and chloride are set to zero if under the detection limit of 0.0107 and 820 
0.0391 µg.m3.  
In the case of PALMS, we use volume weighted products (Froyd et al., 2019). In this study, PALMS 
particle classes include mineral dust, sea salt, biomass burning, and sulfate-organic-nitrate mixtures 
(SON). The SON class was further refined into organic-rich, sulfate-rich, and nitrate-rich particle types, 
plus a remainder of SON particles that did not exhibit a dominant chemical sub-component. To define the 825 
Marine and Polluted Dust AMTs, PALMS composition was combined with aerosol size distribution data 
from LARGE to yield integrated volume fractions of mineral dust and sea-salt particle types from D=0.1-
5 µm based on the method of Froyd et al. (2019). In Fig. 4 the average AMT chemical composition is 
determined as a raw number fraction of particles observed by PALMS. 
 830 

A.1.2 Method to Collocate Airborne Observations 

All the airborne observations are cloud screened using wing-mounted cloud probes. Table A2 defines 
three datasets used in this study with its associated number of data points, called AIRBO1, AIRBO2 and 
AIRBO3 and their combination, AIRBO. In the AIRBO1,2,3 and ultimately the AIRBO datasets, the 
LARGE data is first collocated to housekeeping (HSKP) data (i.e., select same “start_utc” in seconds) 835 
and humidified/ filtered (see A.1.1).  
 
In the AIRBO1 dataset, we compute the mean HSKP and LARGE values in a ± 30 second range centered 
on each collocated AMS-PALMS-SP2 “start_time” (i.e., the 1 min “merged” file). We then record 
LARGE averaged values if (i) the average is made of at least 20 points and (ii) the standard deviation of 840 
the LARGE EAE is below 30%.  
 
In the AIRBO2 dataset, we compute the mean HSKP and LARGE values between each DASH-SP 
“start_utc” and “end_utc”. DASH-SP measurements are then filtered and humidified using the dry 
DASH-SP and the averaged ambient HSKP measurements (see A.1.1). We record HSKP, LARGE and 845 
DASH-SP values if the following four parameters are below 30%: (i) the standard deviation of the 
LARGE EAE, (ii) the difference between 𝜅DASH-SP_dry and 𝜅var (see A.1.1), (iii) the standard deviation of 
RHHSKP and (iv) the standard deviation of THSKP. 
 
In the AIRBO3 dataset, we compute the mean HSKP and LARGE values between each PI-Neph 850 
“start_utc” and “end_utc”. PI-Neph measurements are then filtered and humidified using LARGE dry 
scattering coefficient and f(RH) measurements (see section 6.1.3). We record HSKP, LARGE and PI-
Neph values if the following four parameters are below 30%: (i) the standard deviation of the LARGE 
EAE, (ii) the standard deviation on scatPI-Neph_dry , (iii) the standard deviation on LARGE f(RH), and the 
difference between PI-Neph scatPI-Neph_target and scatPI-Neph_ambient. 855 
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Finally, we collocate the HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) to the AMS-PALMS-SP2 
datasets in the case of AIRBO2 (AIRBO3). To do that, if there are multiple AMS-PALMS-SP2 data points 
between each HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged time stamp, we average all 
AMS-PALMS-SP2 data between the HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged 860 
time stamps. If there are no multiple AMS-PALMS-SP2 data points between the HSKP-LARGE-DASH-
SP (HSKP-LARGE-PI-Neph) averaged time stamps, we select the closest AMS-PALMS-SP2 data in time 
to the HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged time stamps. 
 
The dataset in this study, AIRBO, was obtained by first, selecting common 1 min UTC time stamps from 865 
all 3 datasets, and then arbitrarily selecting, in order of priority when present, AIRBO2, AIRBO1 and 
AIRBO3. 
 

Name of 
Dataset 

Instruments 
(see Table 1) 

Temporally Co-located 
Aerosol Optical Parameters 
(see Table 1, 2) 

Valid Number of 
Data Points 
(*) 

AIRBO1 LARGE EAE, SSA, dSSA, AC, AAE 871 
AIRBO2 LARGE, 

DASH-SP 
EAE, SSA, dSSA, AC, AAE, RRI 716 

AIRBO3 LARGE,  
PI-Neph 

EAE, SSA, dSSA, AC, AAE, RRI 176 

AIRBO  
(This study) 

LARGE, 
DASH-SP,  
PI-Neph 

EAE, SSA, dSSA, AC, AAE, RRI 781 

Table A2: Definition of three datasets (AIRBO1, AIRBO2, AIRBO3) and their combination, AIRBO 
(which is the dataset used in this study), the airborne instruments involved during SEAC4RS, the 870 
co-located parameters (EAE: Extinction Angstrom Exponent, SSA: Single Scattering Albedo, 
dSSA: difference in SSA at 2 wavelengths, AC: absorption Coefficient and AAE: Absorption 
Angstrom Exponent and RRI: Real Refractive Index) and the (*) number of data points showing 
valid aerosol optical properties and one valid PS-AMT (among BBAg., BBWild., Bio. or PollDust) 
 875 

A.1.3 Method to Define Prescribed Source-based AMTs (PS-AMTs) 

This section explains Fig. 2 (and step 1 in Fig. 1) in more details. We refer the reader to Table 1 for all 
the instruments in this section. First, we define Polluted Dust PS-AMT using PALMS dust number 
fraction (i.e., PALMS 'MineralFrac_PALMS') above 0.15 and integrated the Dry Aerosol Volume 
Concentration by the APS (i.e., 'IntegV_Daero-PSL_APS_LARGE' above 2µm3cm-3; note that APS 880 
measurements sampled dry aerodynamic diameters ranging from 0.56 to 6.31µm (Espinosa et al., 2018)). 
Similarly, we define Marine PS-AMTs when PALMS sea-salt number fraction > 0.15 and total volume 
>2 µm3 cm-3. The remaining observations may then be evaluated for Biomass Burning (BB) PS-AMTs if 
gas-phase measurements of acetonitrile, isoprene, monoterpene and CO (i.e., using PTRMS 
“Acetonitrile”, WAS “Isoprene_WAS”, PTRMS “Isoprene-Furan”, PTRMS “Monoterpenes”, WAS 885 
“CO_WAS” and DACOM “CO_DACOM”) meet certain prespecified thresholds. More specifically, 
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observations are classified as BB if (i) acetonitrile > 250 x 10-3 ppbv, or (ii) (acetonitrile > 190 x 10-3 
ppbv) & (acetonitrile/(isoprene + monoterpene)>2.5) or (iii) CO>250 ppbv. BB PS-AMTs are further 
differentiated as coming from prescribed (agricultural) fires (called “BB Ag.”) if the longitude is east of 
-95º or from wildfires (called “BB wild.”) if the longitude is west of -95º.The -95º longitude threshold 890 
was selected according to Fig. 3 and the location of Ag. fires (green triangles) according to Liu et al. 
(2016). If observations are not classified as dust or BB, we classify them as biogenic if isoprene + 
monoterpene > 2ppbv. Finally, remaining observations are classified as urban if the altitude is below 3km 
and NO2 > 1 ppbv (i.e., using the NOAA Nitrogen Oxides and Ozone (NOy/O3 NO2 “NO2_ESRL” or 
TDLIF “NO2_TDLIF”). 895 
 

A.1.4 Method to Select Most Useful and Well Separated Aerosol Optical Properties 

This section explains step 2 of Fig. 1 in more details. Figure A1 is a simplified example to illustrate our 
method. It shows only two optical parameters (i.e., SSA and EAE) and three hypothetical PS-AMTs (e.g., 
“pure” dust in red, marine in blue and BB in green) measured by one hypothetical optical instrument in 900 
two different environments (defined by different locations and times, Fig. A1 a-b vs. A1 c-d). Fig A1 a-
b shows a smaller hypothetical range of EAE and SSA for the BB PS-AMT (green cluster), compared to 
Fig. A1 c-d.  
To answer the questions “how well are these PS-AMTs (i.e., red, blue and green clusters in either Fig. A1 
a or A1 c) separated” i.e., “are the optical signatures of these PS-AMTs distinct?”, we (i) select each data 905 
point separately (e.g., yellow crosses on Fig A1 b and A1 d), (ii) recompute each PS-AMT cluster with 
the data point excluded (i.e., different blue PS-AMT on A1 b and green PS-AMT on A1 d compared to 
A1 a and A1 c) and calculate the Mahalanobis distance (Mahalanobis, 1936; Burton et al., 2012). The 
Mahalanobis distance is the distance between the data point in question (i.e., yellow crosses on Fig. A1 b 
or A1 d) and the position of each cluster center (i.e., red, blue, and green clusters on Fig. A1 b or A1 d), 910 
which depends on cluster center, tilt and width in a multi-parameter space. These distances are called D1, 
D2 and D3 on either Fig. A1 b or A1 d. In the case of the yellow cross on Fig. A1 b, distance D1 is the 
smallest and the test point is reassigned to its original cluster. The test point is by consequence well 
separated from other clusters and “steady”. On the other hand, distance D1 is also the smallest on Fig. A1 
d, which means the test point (yellow cross) on Fig. A1 d is not reassigned to its original cluster. The test 915 
point is by consequence not well separated from other clusters in this case and not “steady”. “Steady 
fraction” is the fraction of cases within each PS-AMT that are correctly identified. “Steady” fractions are 
used to assess separation between PS-AMTs. When including additional components (e.g., any other 
aerosol optical parameter from Table 2 in addition to SSA and EAE on Fig. A1), the additional number 
of “steady points” shows the component’s relative importance in separating the PS-AMTs. The yellow 920 
points that are “steady” on Figure A1 (i.e., correctly classified, or well separated) are used to define the 
most useful and well separated aerosol optical properties for each PS-AMT (i.e., step 2 in Fig. 2). 
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Figure A1: Conceptual/ hypothetical illustration of how we quantify separation between different 925 
air mass types, select the most useful and well separated aerosol optical parameters. It shows three 
hypothetical PS-AMTs (e.g., dust in red, marine in blue and BB in green) measured by one 
hypothetical optical instrument (Fig. A1 a-b) in one environment and another (Fig. A1 c-d). The 
EAE and SSA values in this illustration are based on AERONET observations (Russell et al, 2014) 
and are representative of typical “pure” dust, marine and BB total column remote sensing inferred 930 
ground based EAE and SSA values. Note that it only shows two dimensions even though some 
calculations of Mahalanobis Distances (e.g., D1, D2, D3) will be made using more dimensions in this 
study. 
 

A.2 Additional Information on Results 935 

A.2.1 Aerosol Optical Parameters classified by PS-AMT 

This section describes the ranges of the sixteen aerosol optical parameters (i.e., EAE, SSA, dSSA, AAE 
and AC at different combinations of 450, 550 and 700 nm and RRI at 532 nm from Table 2), classified 
by PS-AMTs in our study. 
 940 
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Figure A2: EAE (450-700nm, 450-550nm, 550-700nm) and AC (450, 550 and 700nm) per PS-AMTs. 
In each blue box, the red horizontal line indicates the median, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respectively. The black whiskers extend to the most 945 
extreme data points not considered outliers, and the outliers are plotted individually using red 
points. Let us note that the LARGE EC measurements at 700 nm experienced issues during the 
latter half of SEAC4RS (Shinozuka et al., pers. comm.). AC: Absorption Coefficient, EAE: 
Extinction Angstrom Exponent. Numbers in the title correspond to the number of points behind 
each box-whisker for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs. 950 
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Figure A3: SSA (450, 550 and 700nm) and AAE (450-700nm, 450-550nm, 550-700nm) per PS-
AMTs. In each blue box, the red horizontal line indicates the median, and the bottom and top edges 955 
of the box indicate the 25th and 75th percentiles, respectively. The black whiskers extend to the 
most extreme data points not considered outliers, and the outliers are plotted individually using red 
points. AAE: Absorption Angstrom Exponent, SSA: Single Scattering Albedo. Numbers in the title 
correspond to the number of points behind each box-whisker for the respective BBAg., BBWild., 
Bio. and PollDust PS-AMTs. 960 
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 965 
Figure A4: dSSA (700-450nm, 550-450nm, 700-550nm), RRI (from DASH-SP and PI-Neph), RRI 
from DASH-SP and RRI from PI-Neph at 532 nm per PS-AMTs. In each blue box, the red 
horizontal line indicates the median, and the bottom and top edges of the box indicate the 25th and 
75th percentiles, respectively. The black whiskers extend to the most extreme data points not 
considered outliers, and the outliers are plotted individually using red points. RRI: Real Refractive 970 
Index, dSSA: difference in Single Scattering Albedo. Numbers in the title correspond to the number 
of points behind each box-whisker for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs. 
 
Note the slightly lower RRI values for DASH-SP, compared to PI-Neph (i.e., respectively 1.41 and 1.43 
at 532nm in Fig. A4) in the case of PollDust PS-AMTs. We explain this difference in RRI values by 975 
different PollDust PS-AMT Growth Factor (GF) values. We obtain GF through two methods: (1) the 
values directly measured by DASH-SP for particles in the size range 0.18 < ddry < 0.40 μm and (2) through 
an iterative procedure matching the output of a Mie code with dry PI-Neph retrievals and f(RH) 
measurements made by the LARGE group in parallel (see section A.1.1 for more details). We find a 
respective median PollDust PS-AMT GF value of ~1.3 and ~1.2 in the case of DASH-SP and PI-Neph, 980 
which we suggest is due to a smaller sampling size range for DASH-SP, compared to PI-Neph (see Table 
1).  
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A.2.2 Most Useful and Well Separated Aerosol Optical Properties – Sixteen Parameters 

This section describes the percentage of points unambiguously retrieved or “steady” (i.e., points that are 985 
well separated from other clusters and, hence, reassigned to their initial clusters) when using different 
combinations of respectively two and three out of sixteen aerosol optical parameters across all four 
principal PS-AMTs (i.e., provides more details to section 3.2).  
 
 990 

 
Fig. 

Figure A5: Percentage of points “steady” (i.e., fraction of cases of a given type that are correctly 
identified; see section 2.4 for more info) in the upper panel when using different combinations of 
two aerosol optical parameters in the lower panel for each PS-AMT. Grey box and black points are 995 
combinations of optical parameters showing > 65% “steady” for PS-AMTs BBAg., BBWild., 
Bio.and PollDust. RRI: Real Refractive Index, AAE: Absorption Angstrom Exponent, AC: 
Absorption Coefficient, dSSA: difference in Single Scattering Albedo, SSA: Single Scattering 
Albedo, EAE: Extinction Angstrom Exponent. 
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Fig. 

Figure A6: Percentage of points “steady” (i.e., fraction of cases of a given type that are correctly 
identified; see section 2.4 for more info) in the upper panel when using different combinations of 
three aerosol optical parameters in the lower panel for each PS-AMT. Black points are 1005 
combinations of optical parameters showing > 65% “steady points” for PS-AMTs BBAg., BBWild., 
Bio. and PollDust. RRI: Real Refractive Index, AAE: Absorption Angstrom Exponent, AC: 
Absorption Coefficient, dSSA: difference in Single Scattering Albedo, SSA: Single Scattering 
Albedo, EAE: Extinction Angstrom Exponent. Horizontal orange boxes show the selection of our 
six aerosol optical parameters. Orange boxes show the six aerosol optical parameters that we have 1010 
selected in the remainder of the study. 
 

A.2.3 Composition of our Polluted Dust (PollDust) PS-AMT 

This section shows a compositional picture of the PollDust PS-AMTs from PALMS (see Fig. A7). The 
accumulation mode is a mixture of particle types, all of which contain sulfate and organic material. Coarse 1015 
mode dust particles account for most of the aerosol volume, whereas a non-dust accumulation mode 
contributes most to the total number concentration of particles. 
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 1020 
 
Figure A7: PALMS particle classes are mapped to the total number (a) and volume (b) size 
distribution from LARGE based on the method of Froyd et al. (2019).  Data include flight segments 
representative of the Polluted Dust PS-AMT. 
 1025 
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